登录 | 注册

热门期刊: 细胞研究(英文版)中华医学杂志(英文版)国际临床研究杂志

相关学者

相关机构

胆固醇代谢对骨关节炎发病影响的研究进展

Research progress of the effect of cholesterol metabolism on the pathogenesis of osteoarthritis

ES评分0   

DOI 10.12208/j.ijcr.20230055
刊名
International Journal of Clinical Research
年,卷(期) 2023, 7(2)
作者
作者单位

空军军医大学基础医学院,三大队九中队 陕西西安 ;
军事口腔医学国家重点实验室,国家口腔疾病临床医学研究中心,陕西省口腔疾病国际联合研究中心,空军军医大学第三附属医院,口腔解剖生理学教研室 陕西西安 ;

摘要
骨关节炎(osteoarthritis, OA)是是一种与机械应力和衰老相关的关节疾病,主要表现为关节软骨退行性改变,严重影响患者生活。近年来,代谢失衡被证实也是OA发生发展的关键危险因素之一,其中一个重要的代谢风险因素可能是体内的高胆固醇水平。有研究表明,OA软骨细胞呈现细胞内脂质沉积,同时OA的发生也与调节胆固醇转运的基因表达异常有关。本文通过对OA中胆固醇的代谢及这种关联背后的分子机制的讨论,为骨关节炎的生物过程及治疗提供新的思路。
Osteoarthritis (OA) is a degenerative change of articular cartilage, which seriously affects patients. It is a joint disease related to mechanical stress and aging. In recent years, metabolism has also become one of the key risk factors for the occurrence and development of OA, one of which may be the high cholesterol level in the body. Some studies have shown that OA chondrocytes present intracellular lipid deposition, and the occurrence of OA is related to the expression of genes regulating cholesterol transport. In this paper, we discuss the metabolism of cholesterol in OA and the molecular mechanism behind this association, and provide new ideas for the biological process and treatment of osteoarthritis.
关键词
胆固醇;骨关节炎;代谢
Cholesterol; Osteoarthritis; Metabolism
基金项目
页码 1-6
  • 参考文献
  • 相关文献


[1] Adams CM, Reitz J, De Brabander JK, et al. Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs
[J] .BiolChem, 2004, 279(50):52772-52780. 


[2] Brown MS, Radhakrishnan A, Goldstein JL. Retrospective on Cholesterol Homeostasis: The Central Role of Scap
[J]. Annu Rev Biochem, 2018, 87:783-807. 


[3] Song Y, Liu J, Zhao K, et al. Cholesterol-induced toxicity: An integrated view of the role of cholesterol in multiple diseases
[J]. Cell Metab, 2021, 33(10):1911-1925. 


[4] Kostopoulou F, Malizos KN, Papathanasiou I, et al. MicroRNA-33a regulates cholesterol synthesis and cholesterol efflux-related genes in osteoarthritic chondrocytes
[J].  Arthritis Res Ther, 2015, 17(1):42.


[5] Kostopoulou F, Gkretsi V, Malizos KN, et al. Central role of SREBP-2 in the pathogenesis of osteoarthritis
[J]. PLoS One, 2012, 7(5):e35753. 


[6] Qiu XM, Jin CT, Wang W. Association between single nucleotide polymorphisms of sterol regulatory element binding protein-2 gene and risk of knee osteoarthritis in a Chinese Han population
[J].Int Med Res, 2014, 42(2): 320-328. 


[7] Choi WS, Lee G, Song WH, et al. The CH25H- CYP7B1-RORα axis of cholesterol metabolism regulates osteoarthritis
[J]. Nature, 2019, 566(7743): 254-258.


[8] Kapoor M, Martel-Pelletier J, Lajeunesse D, et al. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis
[J]. Nat Rev Rheumatol, 2011, 7(1):33-42. 


[9] Simopoulou T, Malizos KN, Tsezou A. Lectin-like oxidized low density lipoprotein receptor 1 (LOX-1) expression in human articular chondrocytes
[J]. Clin Exp Rheumatol, 2007, 25(4):605-612.


[10] Edwards PA, Kennedy MA, Mak PA. LXRs; oxysterol-activated nuclear receptors that regulate genes controlling lipid homeostasis
[J]. Vascul Pharmacol, 2002, 38(4):249-256. 


[11] Gentili C, Tutolo G, Pianezzi A, et al. Cholesterol secretion and homeostasis in chondrocytes: a liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein A1 expression
[J]. Matrix Biol, 2005, 24(1):35-44. 


[12] Yu XH, Tang CK. ABCA1, ABCG1, and Cholesterol Homeostasis
[J]. Adv Exp Med Biol, 2022, 1377:95-107. 


[13] He H, Lu M, Shi H, et al. Vaspin regulated cartilage cholesterol metabolism through miR155/LXRα and participated in the occurrence of osteoarthritis in rats
[J]. Life Sci, 2021, 269:119096. 


[14] Tsezou A, Iliopoulos D, Malizos KN, et al. Impaired expression of genes regulating cholesterol efflux in human osteoarthritic chondrocytes
[J]. J Orthop Res, 2010, 28(8):1033-1039. 


[15] Collins-Racie LA, Yang Z, Arai M, et al. Global analysis of nuclear receptor expression and dysregulation in human osteoarthritic articular cartilage: reduced LXR signaling contributes to catabolic metabolism typical of osteoarthritis
[J]. Osteoarthritis Cartilage, 2009, 17(7):832-842. 


[16] Oliviero F, Sfriso P, Baldo G, et al. Apolipoprotein A-I and cholesterol in synovial fluid of patients with rheumatoid arthritis, psoriatic arthritis and osteoarthritis
[J]. Clin Exp Rheumatol, 2009, 27(1):79-83.


[17] Zhang K, Ji Y, Dai H, et al. High-Density Lipoprotein Cholesterol and Apolipoprotein A1 in Synovial Fluid: Potential Predictors of Disease Severity of Primary Knee Osteoarthritis
[J]. Cartilage, 2021, 13(1_suppl): 1465S-1473S. 


[18] Villalvilla A, Larrañaga-Vera A, Lamuedra A, et al. Modulation of the Inflammatory Process by Hypercholesterolemia in Osteoarthritis
[J]. Front Med (Lausanne), 2020, 7:566250. 


[19] Gkretsi V, Simopoulou T, Tsezou A. Lipid metabolism and osteoarthritis: lessons from atherosclerosis
[J]. Prog Lipid Res, 2011, 50(2):133-140. 


[20] Goyal N, Gupta M, Joshi K. Ultrastructure of chondrocytes in osteoarthritic femoral articular cartilage
[J]. Kathmandu Univ Med J (KUMJ), 2013, 11(43):221-225. 


[21] Farnaghi S, Prasadam I, Cai G, et al. Protective effects of mitochondria-targeted antioxidants and statins on cholesterol-induced osteoarthritis
[J]. FASEB, 2017, 31(1): 356-367. 


[22] Arai Y, Choi B, Kim BJ, et al. Tauroursodeoxycholic acid (TUDCA) counters osteoarthritis by regulating intracellular cholesterol levels and membrane fluidity of degenerated chondrocytes
[J]. Biomater Sci, 2019, 7(8):3178-3189. 


[23] Triantaphyllidou IE, Kalyvioti E, Karavia E, et al. Perturbations in the HDL metabolic pathway predispose to the development of osteoarthritis in mice following long-term exposure to western-type diet
[J]. Osteoarthritis Cartilage, 2013, 21(2):322-330. 


[24] Muneshige K, Uchida K, Kenmoku T, et al. Elevation of MMP1 and ADAMTS5 mRNA expression in glenohumeral synovia of patients with hypercholesterolemia
[J]. Orthop Surg Res, 2022, 17(1):97. 


[25] Gabay O, Sanchez C, Salvat C, et al. Stigmasterol: a phytosterol with potential anti-osteoarthritic properties
[J]. Osteoarthritis Cartilage, 2010, 18(1):106-116.


[26] de Munter W, van der Kraan PM, van den Berg WB, et al. High systemic levels of low-density lipoprotein cholesterol: fuel to the flames in inflammatory osteoarthritis?
[J]. Rheumatology (Oxford), 2016, 55(1):16-24. 


[27] McNulty AL, Rothfusz NE, Leddy HA, et al. Synovial fluid concentrations and relative potency of interleukin-1 alpha and beta in cartilage and meniscus degradation
[J]. Orthop Res, 2013, 31(7):1039-1045. 


[28] Fernandes MT, Fernandes KB, Marquez AS, et al. Association of interleukin-6 gene polymorphism (rs1800796) with severity and functional status of osteoarthritis in elderly individuals
[J]. Cytokine, 2015, 75(2):316-320. 


[29] Seo YS, Cho IA, Kim TH, et al. Oxysterol 25-hydroxycholesterol as a metabolic pathophysiological factors of osteoarthritis induces apoptosis in primary rat chondrocytes
[J]. Korean J Physiol Pharmacol, 2020, 24(3):249-257. 


[30] Wei Z, Dong C, Guan L, Wang Y, et al. A metabolic exploration of the protective effect of Ligusticum wallichii on IL-1β-injured mouse chondrocytes
[J]. Chin Med, 2020, 15:12.

  • 文献评论